Calcium-Mediated Induction of Paradoxical Growth following Caspofungin Treatment Is Associated with Calcineurin Activation and Phosphorylation in Aspergillus fumigatus

نویسندگان

  • Praveen R. Juvvadi
  • Alberto Muñoz
  • Frédéric Lamoth
  • Erik J. Soderblom
  • M. Arthur Moseley
  • Nick D. Read
  • William J. Steinbach
چکیده

The echinocandin antifungal drug caspofungin at high concentrations reverses the growth inhibition of Aspergillus fumigatus, a phenomenon known as the "paradoxical effect," which is not consistently observed with other echinocandins (micafungin and anidulafungin). Previous studies of A. fumigatus revealed the loss of the paradoxical effect following pharmacological or genetic inhibition of calcineurin, yet the underlying mechanism is poorly understood. Here, we utilized a codon-optimized bioluminescent Ca(2+) reporter aequorin expression system in A. fumigatus and showed that caspofungin elicits a transient increase in cytosolic free Ca(2+) ([Ca(2+)]c) in the fungus that acts as the initial trigger of the paradoxical effect by activating calmodulin-calcineurin signaling. While the increase in [Ca(2+)]c was also observed upon treatment with micafungin, another echinocandin without the paradoxical effect, a higher [Ca(2+)]c increase was noted with the paradoxical-growth concentration of caspofungin. Treatments with a Ca(2+)-selective chelator, BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid], or the L-type Ca(2+) channel blocker verapamil abolished caspofungin-mediated paradoxical growth in both the wild-type and the echinocandin-resistant (EMFR-S678P) strains. Concomitant with increased [Ca(2+)]c levels at higher concentrations of caspofungin, calmodulin and calcineurin gene expression was enhanced. Phosphoproteomic analysis revealed that calcineurin is activated through phosphorylation at its serine-proline-rich region (SPRR), a domain previously shown to be essential for regulation of hyphal growth, only at a paradoxical-growth concentration of caspofungin. Our results indicate that as opposed to micafungin, the increased [Ca(2+)]c at high concentrations of caspofungin activates calmodulin-calcineurin signaling at both a transcriptional and a posttranslational level and ultimately leads to paradoxical fungal growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the FKBP12-Encoding Genes in Aspergillus fumigatus

Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin acti...

متن کامل

The Aspergillus fumigatus CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect

Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis (IA), a life-threatening disease in immunocompromised humans. The echinocandin caspofungin, adopted as a second-line therapy in combating IA, is a β-1,3-glucan synthase inhibitor, which, when used in high concentrations, reverts the anticipated A. fumigatus growth inhibition, a phenomenon called the "ca...

متن کامل

Identification and mutational analyses of phosphorylation sites of the calcineurin-binding protein CbpA and the identification of domains required for calcineurin binding in Aspergillus fumigatus

Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin b...

متن کامل

Hsp70 and the Cochaperone StiA (Hop) Orchestrate Hsp90-Mediated Caspofungin Tolerance in Aspergillus fumigatus.

Aspergillus fumigatus is the primary etiologic agent of invasive aspergillosis (IA), a major cause of death among immunosuppressed patients. Echinocandins (e.g., caspofungin) are increasingly used as second-line therapy for IA, but their activity is only fungistatic. Heat shock protein 90 (Hsp90) was previously shown to trigger tolerance to caspofungin and the paradoxical effect (i.e., decrease...

متن کامل

In Vitro Antifungal Activity and Mode of Action of 2',4'-Dihydroxychalcone against Aspergillus fumigatus

2',4'-Dihydroxychalcone (2',4'-DHC) was identified from a heat shock protein 90 (Hsp90)-targeting library as a compound with Hsp90 inhibitory and antifungal effects. In the presence of 2',4'-DHC (8 µg/mL), radial growth of Aspergillus fumigatus was inhibited 20% compared to the control, and green pigmentation was completely blocked. The expression of the conidiation-associated genes abaA, brlA,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2015